
 

 

 
 

                                                                                                            

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. INTRODUCTION 
 

Unmanned ground vehicles (UGVs) have too many 

potential applications, both in military and civil areas, such as 

reconnaissance, surveillance, target acquisition, and rescue. 

Now many UGVs, especially in military applications, use 

skid-steering for all-terrain mobility, both in tracked and 

wheeled platforms. The absence of a steering system for a 

skid-steered UGV makes the vehicle mechanically robust and 

simple for terrain or outdoor environment navigation. Due to the 

varying tire-ground interactions and over constrained contact, it 

is quite challenging to obtain accurate dynamic models for such 

mobile robots. These UGVs need to be tested under different 

conditions before putting into work. It is very important to 

model the actual vehicle and simulate test conditions similar to 

those robots that might encounter while developing or testing the 

robot. Vehicle dynamics accommodates all forms of conveyance 

using rubber tired vehicles, track laying vehicles, trains etc. The 

control of the UGVs only at the kinematic level is not sufficient 

as there are many works which were based only on the kinematic 

models, and gave less satisfactory responses. Use of the dynamic 

models can provide better results on the trajectory tracking 

performance of UGVs.  

Despite of having so many inconveniences, it is really 

challenging to get correct dynamic models and trajectory 

tracking performance for such UGVs because of the varying 

tire/ground interactions and over constrained contact. 

 

 

 

 

 

 

 

 

 
Fig. 1: A four wheeled skid-steered UGV. 

 

Skidding and slipping effects of wheels make the kinematic and 

dynamic modeling of the skid-steered UGVs very complicated. 

In [1], Shiller et al. determine the nominal track forces required 

to follow a specified path at desired speeds and compute vehicle 
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orientations along the path that are consistent with the 

nonholonomic constraint. Zhang et al. [2] derive a simplified 

dynamic model which is adequate for control design and treat 

the remaining terms as model uncertainty. In [3], a path tracking 

control algorithm for tracked surface drilling machines is 

presented by Ahmadi et al. in which the general dynamic model 

of vehicle is simulated including track-soil interactions. In [4], a 

trajectory tracking control problem for a four-wheel 

differentially driven mobile robot moving is considered by 

Caracciolo et al. on an outdoor terrain. Wang et al. [5] develop a 

trajectory planning algorithm for a four-wheel-steering vehicle 

based on vehicle kinematics in which the flexibility offered by 

the steering is utilized fully in the trajectory planning. In [6], a 

mathematical model of a 4-wheel skid-steering mobile robot is 

presented by Kozłowski et al. in a systematic way where the 

robot is considered as a subsystem consisting of kinematic, 

dynamic and drives levels. In [7], Jingang et al. again present 

localization and slip estimation scheme for a skid-steered mobile 

robot using low-cost inertial measurement units (IMU). They 

again present an adaptive trajectory control design for a 

skid-steered wheeled mobile robot with kinematic and dynamic 

modeling of the robot [8]. Later, Wang et al. in [9] aim to give a 

general and unifying presentation on modeling of wheeled 

mobile robots in the presence of wheel skidding and slipping 

from the perspective of control design. In [10], a comparison 

study is presented for the control performance of an 

omni-directional mobile robot with and without considering 

wheel slip. It was found that the significance of slip increases 

when the wheel/ground friction coefficient is larger. A tire/road 

friction model in automotive study was also considered for the 

longitudinal friction force. 

In this paper, primarily the kinematic and dynamic 

modeling of a wheeled skid-steered UGV are discussed in 

section 2. Section 3 describes a pseudo-static friction model for 

the wheel-ground interaction. The responses of the trajectory 

tracking are demonstrated in section 4. Finally, we discuss the 

effectiveness of the model and conclude the paper with future 

research directions in section 5.  

 

2. KINEMATIC AND DYNAMIC MODEL 

 

We consider the following assumptions without loss of 

generality. 

 

Modeling Assumptions 

1. Mass center is located at the geometric center of the 

body frame. 

2. Point contact between wheel and ground. 

3. Contact rolling resistance force is negligible. 

4. Two wheels on each side rotate at same speed. 

5. Wheel slipping and skidding is considered. 

6. Equally distributed normal forces at the wheel/ground 

contact points among four wheels during motion. 

7. Robot is running on a flat ground surface and four 

wheels always in contact with ground surface. 

Figure 2 represents the schematic of the wheeled 

skid-steered UGV according to which a fixed reference or global 

frame is defined as (X, Y) and a moving body or local frame as (x, 

y).  

Let the wheel angular velocities be       and the velocities of 

the wheel contact points be 
i

u , i = 1, 2, 3, 4, for the left-front, 

left-rear, right-front, and right-rear wheels, respectively. 

According to the assumption  4,                                 The 

longitudinal and lateral forces at each wheel’s contact point are 

Fi and Pi, i = 1, 2, 3, 4, respectively. The velocity of the robot 

mass center is denoted as vG. Also the longitudinal and lateral 

wheel bases are represented as L and W, respectively. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2: Top view schematic of a wheeled skid-steered UGV on a flat 

surface. 

 

       Let the instantaneous center of rotation (ICR) of the 

left-side wheel contact points, right-side wheel contact points, 

and the robot body as ICRl, ICRr, and ICRg, respectively. It is 

known that ICRl, ICRr and ICRg lie on a line parallel to the y-axis 

[8]. Let , ,x y   be the longitudinal, lateral and angular velocity 

of the vehicle in the body frame respectively. The absolute 

velocities in global frame are 

 

 

 

 

Differentiation with respect to time 

 

 

 

 

       Longitudinal velocities of the wheel/ground contact points 

are 

 
 

 

 

       where r = wheel radius. Then we can define the longitudinal 

wheel slips λi as 
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       where 
ix ix i

u u r   . Note that λ1 = λ2 and λ3 = λ4 

according to assumption 4. Under the above definition, λ ∈ [0, 1] 

if the wheel is under traction, and λ ∈ (−∞, 0] if the wheel is 

under braking, which is undesirable for uniformly modeling the 

wheel/ground friction under traction and braking cases. In order 

to avoid such a problem, we restrict the magnitude of λ to a 

maximum magnitude of 1.0 for λ < 0 under braking [8]. 

 Let the x-y coordinates for ICRl, ICRr, and ICRg be (xl,yl), 

(xr,yr), and (xg,yg), respectively. We can find that the x-coordinate 

S of the ICRs satisfies the following constraints 

 

 

 
The longitudinal skid velocities of the wheel/ground contact 

points are 

 

 

 

 

 

Combining (1), (4) and 
ix ix i

v v r   , we get  

 
 

 

 

3. FRICTION MODELING 

 

In order to develop a friction model we consider the 

longitudinal friction forces Fi = Niμi where i = 1, 2, 3, 4; μi = 

friction coefficient; and Ni = normal force. Coefficient μ is a 

function of the longitudinal slip λ. Figure 3(a) shows the μ-λ 

curve that is obtained by fitting the experimental data [11]. Here, 

a linear approximation of the μ-λ curve is considered as shown 

in Fig. 3(b). For the traction case, the friction coefficient μ can 

be approximated by the following functions.  

 

 

 
 

 

       where K = friction stiffness coefficient, λm = longitudinal 

slip value corresponding to the maximum wheel/ground friction 

coefficient, and μs = longitudinal wheel/ground sliding friction 

coefficient. 

Assume, μs is a fraction of the pick friction coefficient μp, i.e.  
   

 

 

After simplification, equation (6) becomes  

 

 

where function sgn(x) = 1 if x ≥ 0 and function sgn(x) = -1 if x < 

0. In case of traction 

   

 

 

 

 

 

 

and for the braking case 

 

 

 

 

 

   

 

 

 

Longitudinal friction force Fi and lateral friction force Pi are 

dependent on each other, and their magnitudes form a force 

circle [12] as  

                    Fi = Fir cosθi    and  Pi = Fir sinθi   

 

where Fir = resultant maximum friction force of the ith wheel 

and θi = slip angle at the ith wheel. The longitudinal friction 

force Fi = Niμi(λi). Therefore, we can rewrite the lateral friction 

force Pi as  

Pi =Fi tan θi         (i = 1, 2, 3, 4)                          (10) 

 

The longitudinal forces Fi and the lateral forces Pi follow the 

relationship in Eq. (10). Figure shows the four combinations of 

friction forces for each side of wheels [8]. Denote the ICR 

coordinates as (x, y) and for all cases shown in Fig.  we can 

rewrite Eq. (10) as follows.   

   

 

      

 

 

 
 
Fig. 3: (a) Relationship between μ and λ. (b) A linear approximation of 

the μ-λ relationship [8]. 

 

 
 
Fig. 4: Friction forces; (a) braking while turning left, (b) traction while 

turning left, (c) braking while turning right and (d) traction while turning 

right [8]. 

 

       Notice that       and F1, F2 ≥ 0 is the magnitude of the 

longitudinal friction force in the above equations. sgn (λ1), sgn 

(λ2) = +ve and –ve for traction and braking respectively. Assume 

normal load at each wheel Ni = mg/4 is a constant. The ground 

soil conditions are same four all the four wheels as the robot size 
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is relatively small. Therefore, λ1 = λ2, λ3 = λ4 and F1 = F2, F3 = F4. 

Using Eq. (11), we can get 

   

 

 

 

 

 

 

 

 

 

Therefore, dynamic equations in the (x, y) frame are as follows 

 

 

 

 

 

 

 

 

   

 
where m = mass of the UGV and Ig = mass moment of inertia of 

the UGV about g. 

Traction/braking forces Fi = Ni μi(λi) is found using Eqs. (2), 

(4), (5), and (7) and we can obtain the friction force model as 

follows 
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We define the control input variables as follows 

 

 

The dynamics of the body frame (x, y) can be obtained 

using friction model (15) and Eq. (2) as  

 

 

 

 

 

 

 

 

   

 

 

    

 

 

 

 

 

 

    

 

 

 

Now, we define generalized coordinates as Q = [X Y  ]T. 

Using Eq. (1), the body frame dynamics (16) can be transferred 

into global frame (X, Y) as   

  

   

 

 

     

  

 

   

 

 

 

 

 

 

 

 

 

 

 
Operative Nonholonomic Constraint 

We have the nonholonomic constraint [Eq. (3)]. The x-axis 

projection of the ICR cannot be larger than L/2. Otherwise the 

UGV would skid along the y-axis thus losing control. In order to 

have the UGV move properly, it should have  

 

 

Therefore, we introduced the following operative constraint  
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Incorporating this nonholonomic constraint into the 

dynamics [Eq. (14)], we got our reduced state-space model as 

follows 
 

 

   

 

 

 

Matrix G(q) has its columns in the null space of A(q) 
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The simplified form of Eq. (20b) is 

 

   

   

      

 

 

 

 

 

 

 

 

4. SIMULATION AND RESULTS 

 

In this section, we present the modeling response from the 

dynamics of UGV. In order to design the model, we follow step 

by step procedure and the entire simulation is done using Matlab 

SIMULINK. The methodology is as follows 

 

 

    

 

 

 

 

 

 

 

 

 
Fig. 5: SIMULINK model of the dynamic model of skid-steered UGV. 

 

In this simulation, the UGV is designed to follow a given 

trajectory which is circular. For the UGV, we select: W = 0.43m, 

L = 0.28m, r = 0.08m, m = 5kg and Ig = 0.45kgm2. The UGV is 

under constant angular velocities ω1 = ω2 = 60 rpm and ω3 = ω4 

= 120 rpm. Following figure shows the trajectory response of the 

UGV with this wheel speed combination. 

 

4.1 For leftward turning of UGV 

 

 

 

 

 

     

 

 

 

 

 

 

 

 

 
Fig. 6: UGV trajectory response. 

 

 

 

 
 

   

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7: Position responses. 

 

 

 
 

 

 

 

 

 

 

 

 

(a) 

 
 

 

 

 

 

 

 

 

 

 

(b) 

 

Fig. 8: Longitudinal slip for (a) left wheel = -0.107 and (b) right wheel = 

0.107. 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9: Lateral skid value S = 0.152 steady after some time. 
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4.2 For rightward turning of UGV 

If we choose opposite wheel speeds, i.e., ω1 = ω2 = 120 rpm 

and ω3 = ω4 = 60 rpm, the UGV is able to follow the circular 

trajectory of similar size and shape as follows 

 

 
   

10: UGV trajectory response. 

 

 
 

Fig. 11: Position responses. 

 

 

 (a) 

 

(b) 

Fig. 12: Longitudinal slip for (a) left wheel = 0.107 and (b) right wheel = 

-0.107. 

 

 
 

Fig. 13: Lateral skid value S = 0.152 steady after some time. 

 

5. CONCLUSIONS 

 

In this paper, a mathematical model based on the dynamics 

of a wheeled type skid-steered UGV was developed and then 

Matlab SIMULINK was used to simulate for analyzing the 

performance of the model. The UGV had to follow a given 

trajectory where wheel slipping and skidding effect were 

included. Both of these effects made the model distinct from 

other related models and a bit complex. The UGV performed 

quite well in making a good shaped circular trajectory with the 

dynamic model developed. Also the UGV gave the similar 

circular shaped trajectory by rotating leftwards as it did in case 

of the rightward turn. We also showed the wheel slipping as well 

as skidding effects in both cases and those effects were also 

similar in nature for both turns.  A nonlinear slip-friction model 

can be included in future in order to improve the dynamic model 

more so that it gives better responses in rough terrains.  
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